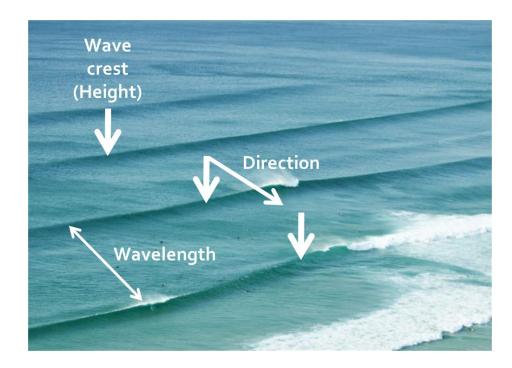


Estimation of wave direction using IMU data from a surface drone

- Manele Ait Habouche
- Jean-Philippe Babau
- Mickaël Kerboeuf
- Goulven Guillou

Context

- USV (Unmanned Surface Vehicle) applications
 - Marine exploration
 - Environmental monitoring
- Wave characteristics
 - Significant wave **height**
 - Period between two crests
 - Direction
- Objective
 - Navigation
 - Operational safety



Sea state estimation using machine learning

- Traditional methods (wave buoys, wave radars, satellites)
 - High costs [1]
 - Limited spatial resolution [1]
- Data-driven approaches
 - Recent papers (2019 => 2024)[1-2, 11-12]
 - Wave buoy analogy

Wave direction estimation

- All current approaches consider ships
 - Slower response time
 - Large turning radius
 - Drones are more agile => Quick directional changes
- Classification
 - Discrete categories of angles (intervals)
 - Not precise enough
 - More classes are not the solution
- Direction estimation for drones using
 ^N
 machine learning
 - Need to collect data to form a dataset
 - Adequate ML model

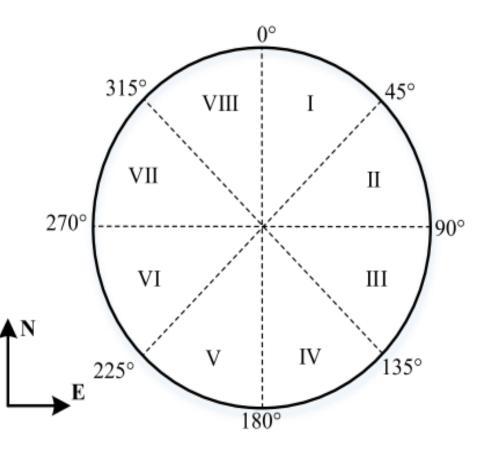


Image taken from [2]

Outline

Wave direction estimation

Data collection

Machine learning model

Results

Future challenges

Experimental settings

Experimental pool



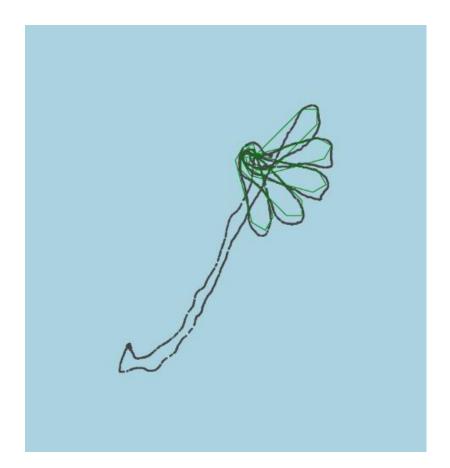
Open sea

Experimental pool data

- IMU and navigation data from a surface drone
- 10 trajectories
- Tests under various conditions
 - Wave height
 - Wave period
 - Steering rate PID
 - Speed/throttle PID
- Controlled wave direction

Open sea data

- IMU and navigation data from a surface drone
- 6 trajectories
- Tests under various conditions
 - Steering rate PID
 - Speed/throttle PID



Outline

Wave direction estimation

Data collection

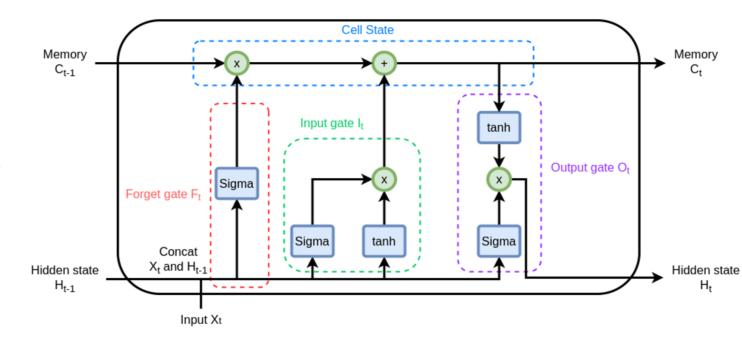
Machine learning model

Results

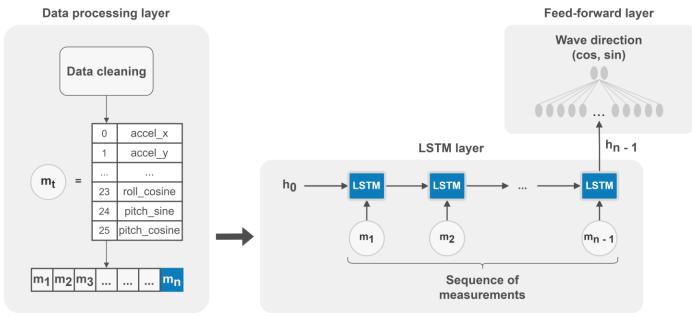
Future challenges

Long-Short Term Memory (a spatial view)

- Designed for sequential data
- Components
 - Memory: Store information over "long" periods
 - Hidden state: Output of the current cell
- Gates to control the flow of information
 - Input gate
 - Forget gate
 - Output gate



Our model (a temporal view)



- Features: IMU data (acceleration, angular velocity, Euler angles, etc.)
- Target: Wave angle relative to the drone's current orientation
- Sequence generation (n steps)
- Prediction of the *n*th element based on the (n 1) previous steps

 Ait Habouche, M., Kerboeuf, M., Guillou, G., & Babau, J.-P. (2024). *Machine Learning-Based Estimation Of Wave Direction For Unmanned Surface Vehicles*. arXiv. https://doi.org/10.48550/arXiv.2412.16205

Training and validation

- Experimental pool data divided into training, validation and test datasets
- Training loss: MSE (Mean Squared Error)
- Evaluation metrics
 - MAPE (Mean Absolute Percentage Error)

$$MAPE = \frac{1}{p} \times \sum_{i=1}^{p} \frac{|predicted_i - actual_i|}{actual_i}$$

Angular score

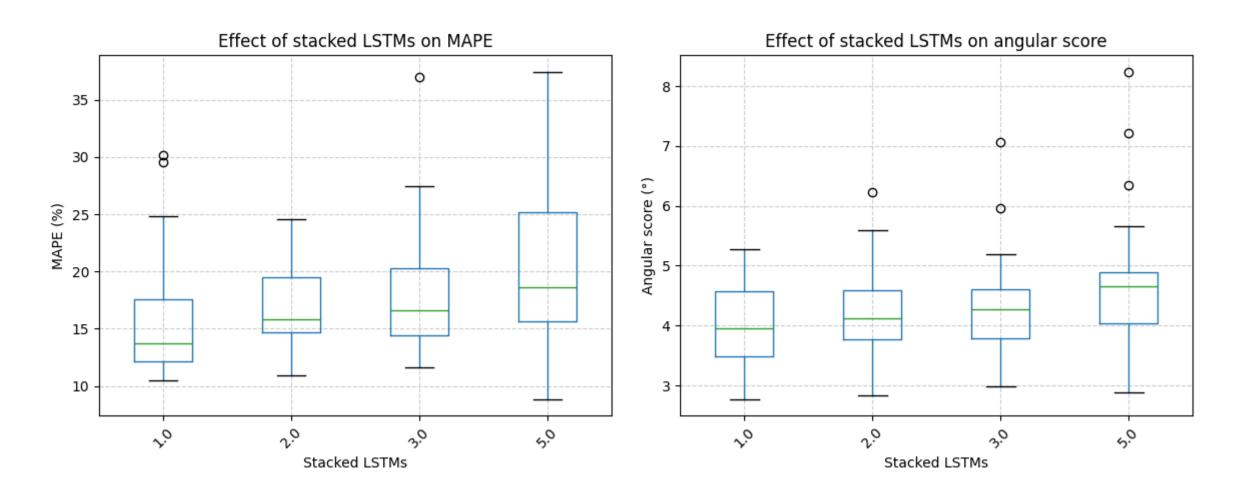
$$Angular \ score = \sqrt{\frac{1}{p} \times \sum_{i=1}^{p} normalized_diff_i}^2$$

- Hyperparameters
 - Sequence size
 - Hidden size (hidden state dimension)
 - Stacked LSTMs
 - Learning rate

Sequence size	Hidden state dimension	Stacked LSTMs	Learning rate	MAPE (%)	Angular score (°)
10	10	1	0.001	11.10	2.81
10	10	1	0.0001	29.51	3.41
20	10	1	0.001	17.70	4.57
20	10	1	0.0001	30.20	5.27
30	10	1	0.001	11.67	3.70
30	10	1	0.0001	19.10	4.31
10	20	1	0.001	10.52	2.77
10	20	1	0.0001	17.07	3.04

:

20	20	5	0.0001	26.64	6.35
30	20	5	0.001	8.83	3.94
30	20	5	0.0001	20.87	4.90
10	100	5	0.001	21.10	4.00
10	100	5	0.0001	15.96	2.88
20	100	5	0.001	18.71	4.87
20	100	5	0.0001	15.33	4.79
30	100	5	0.001	12.07	4.04
30	100	5	0.0001	17.48	4.10

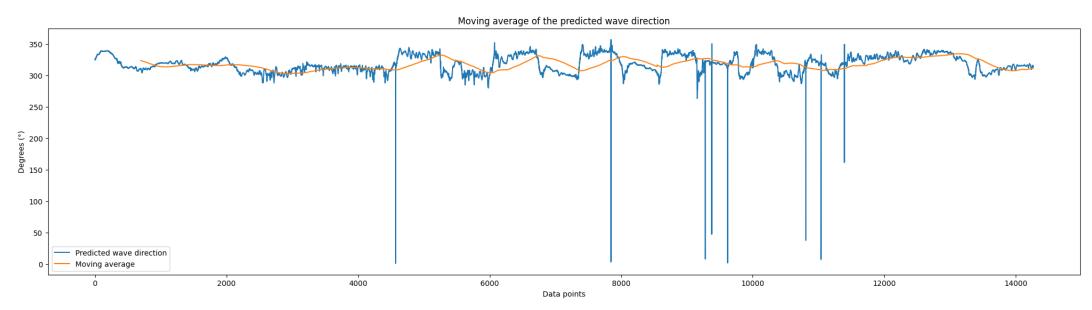


- Hyperparameters
 - Sequence size
 - Hidden size (hidden state dimension)
 - Stacked LSTMs
 - Learning rate
- Chosen configuration
 - Sequence size = 10
 - Hidden size = 20
 - Stacked LSTMs = 1
 - Learning rate = 0.001

Sequence size	Hidden state dimension	Stacked LSTMs	Learning rate	MAPE (%)	Angular score (°)
10	10	1	0.001	11.10	2.81
10	10	1	0.0001	29.51	3.41
20	10	1	0.001	17.70	4.57
20	10	1	0.0001	30.20	5.27
30	10	1	0.001	11.67	3.70
30	10	1	0.0001	19.10	4.31
10	20	1	0.001	10.52	2.77
10	20	1	0.0001	17.07	3.04

				-		
	20	20	5	0.0001	26.64	6.35
ĺ	30	20	5	0.001	8.83	3.94
-	30	20	5	0.0001	20.87	4.90
	10	100	5	0.001	21.10	4.00
-	10	100	5	0.0001	15.96	2.88
	20	100	5	0.001	18.71	4.87
	20	100	5	0.0001	15.33	4.79
	30	100	5	0.001	12.07	4.04
	30	100	5	0.0001	17.48	4.10

Evaluation on unseen data



- Prediction error: 40°
- Moving average on sequences of 28 seconds
 - Mean: 317°
 - Standard deviation: 7°
 - Error: 37°

Future challenges

- Representative dataset
 - Conduct more experiments in different sea conditions to capture a broader range of data
- Other sea characteristics to enhance the model
 - Wind
 - Current
- Real-time estimation
 - Short inference time
 - Energy constraints
- Navigation adaptation

References

- [1] Cheng, X., Li, G., Ellefsen, A. L., Chen, S., Hildre, H. P., & Zhang, H. (2020). A Novel Densely Connected Convolutional Neural Network For Sea-State Estimation Using Ship Motion Data. *IEEE Transactions On Instrumentation And Measurement*, 69(9), 5984–5993. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2020.2967115
- [2] Mittendorf, M., Nielsen, U. D., Bingham, H. B., & Storhaug, G. (2022). Sea State Identification Using Machine Learning—A Comparative Study Based On In-Service Data From A Container Vessel. *Marine Structures*, 85, 103274. https://doi.org/10.1016/j.marstruc.2022.103274
- [3] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. *Neural Computation*, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
- [7] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning For Image Recognition. arXiv. https://doi.org/10.48550/arXiv.1512.03385
- [8] Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied To Document Recognition. *Proceedings Of The IEEE*, 86(11), 2278–2324. Proceedings of the IEEE. https://doi.org/10.1109/5.726791
- [9] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2023). Attention Is All You Need. arXiv. https://doi.org/10.48550/arXiv.1706.03762
- [10] Krause, B., Lu, L., Murray, I., & Renals, S. (2017). Multiplicative LSTM For Sequence Modelling. arXiv. https://doi.org/10.48550/arXiv.1609.07959
- [11] Cheng, X., Li, G., Skulstad, R., Chen, S., Hildre, H. P., & Zhang, H. (2019). Modeling And Analysis Of Motion Data From Dynamically Positioned Vessels For Sea State Estimation. *2019 International Conference On Robotics And Automation (ICRA)*, 6644–6650. https://doi.org/10.1109/ICRA.2019.8794069
- [12] Han, P., Li, G., Skjong, S., Wu, B., & Zhang, H. (2021). Data-Driven Sea State Estimation For Vessels Using Multi-Domain Features From Motion Responses. 2021 IEEE International Conference On Robotics And Automation (ICRA), 2120–2126. https://doi.org/10.1109/ICRA48506.2021.9561261

Thank you for your attention

Comparison with baseline predictors

Model	MAPE (%)	Angular score (°)
MLP	34.35	5.27
Transformer [9]	11.66	2.85
ResNet 18 [7]	28.43	5.67
CNN [8]	33.42	5.23
mLSTM [10]	11.7	2.86
Proposed model	10.52	2.77

