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Estimation of wave direction using IMU data
from a surface drone
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Context

* USV (Unmanned Surface Vehicle)
applications
* Marine exploration

* Environmental monitoring

* Wave characteristics ¢
* Significant wave height

IZ_)ire tion
* Period between two crests —

* Direction &
_ _ Wavelength o
* Objective

* Navigation

* Operational safety



Sea state estimation using machine learning

* Traditional methods (wave
radars, satellites)
* High costs [1]

buoys, wave

* Limited spatial resolution [1]

 Data-driven approaches
* Recent papers (2019 =>2024) [1—2, 11 —12]

* Wave buoy analogy
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Sea state estimation using monitoring data by convolutional neural
network (CNN)
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Abstract

In recent years, the size of container ships has become larger, thus requiring a more cvident assurance of the hull structural
safety. In order to evaluate the structural safety in operation, it is necessary to grasp the encountered sea state. The aim of
this study is to estimate the encountered sea state using machine learning from measurement data of ocean-going 14.000TEU
container ships. In this paper. as a first step in the study, considerable amounts of virtual sca state data and corresponding
ship motion and structural response data are prepared. A convolutional neural network (CNN) is developed using these data
to estimate the directional wave spectrum of encountered sca based on the hull responses. The input parameters of the formu-
lated CNN include the spectral values of ship motion and structural response spectrum. The output of the CNN includes the
sea state parameters of the Ochi-Hubble spectrum, specifically, significant wave height, modal wave frequency, mean wave
direction, kurtosis, and concentration of wave energy directional distribution. It is found from the performance examination
that the developed CNN is capable of accurately estimating the sea state parameters, although the level of accuracy decreases
when the hull response is low. However, the decrease in accuracy when the hull response is low has a weak influence on the
evaluation of the structural response to the estimated sea state.

Keywords Container ship - Convolutional neural network - Ochi-Hubble spectrum - Machine learing - Health monitoring

1 Introduction

In recent years, the sizes of container ships have continued
1o increase, requiring a more evident assurance of the struc-
tural safety of these vessels. Accordingly, it is essential to
grasp actual stress history experienced by ship structures
to facilitate cfficient design and maintenance as well as use
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it to achieve optimal ship operation. In order to evaluate
the structural safety in operation, it is important to accu-
rately estimate the responses of all parts of the structure.
Recently, as part of the structural health monitoring system,
in which ship motion and structural responses (stresses) are
measured by some sensors, has been developed and installed
into many ships. However, in the current monitoring sys-
tem, although it is possible to evaluate the stress responses
of representative parts where the sensors are installed, the
evaluation of responses from all parts of the ship including
non-instrumented locations is not possible. Morcover, it is
unrealistic to install sensors on all parts of the hull. To con-
struct a structural safety evaluation system, it is necessary to
develop a method that can estimate the structural response
of any structural member based on the measurements of rep-
resentative scasors.

Okada [1] proposed a concept to grasp the directional
wave spectrum from the measurement of motion and struc-
tural response of the hull structure, and use it for estimate
the stress history of any part of the hull structure using
corresponding stress response functions. Recently, this
concept gained considerable attention because it can be

£ Springer




Wave direction estimation

* All current approaches consider ships
* Slower response time
* Large turning radius

* Drones are more agile => Quick directional
changes

* Classification
* Discrete categories of angles (intervals)
* Not precise enough
* More classes are not the solution

» Direction estimation for drones using
machine learning
* Need to collect data to form a dataset
* Adequate ML model

180°

Image taken from [2]



Outline

Data collection

Machine learning model

Results

Future challenges



Experimental settings

Experimental pool Open sea



Experimental pool data

IMU and navigation data from a surface drone

10 trajectories

Tests under various conditions
* Wave height
* Wave period

* Steering rate PID %@h
* Speed/throttle PID

Controlled wave direction



Open sea data

* IMU and navigation data from a surface drone

* 6 trajectories

* Tests under various conditions
* Steering rate PID
* Speed/throttle PID




Outline

Machine learning model

Results

Future challenges



Long-Short Term Memory (a spatial view)

* Designed for sequential data

* Components

* Memory: Store information over / _________________ CaiSme .. \
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Our model (a temporal view)

Data processing layer Feed-forward layer

Wave direction

(cos, sin)
Data cleaning

A
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hp -
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y L - )
malmama] .. -] - I Sequence of
measurements

* Features: IMU data (acceleration, angular velocity, Euler angles, etc.)
* Target: Wave angle relative to the drone’s current orientation
* Sequence generation (n steps)

* Prediction of the nth element based on the (n—1) previous steps
Ait Habouche, M., Kerboeuf, M., Guillou, G., & Babau, J.-P. (2024). Machine Learning-Based Estimation Of Wave Direction For Unmanned
Surface Vehicles. arXiv. https://doi.org/10.48550/arXiv.2412.16205
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Training and validation

- Experimental pool data divided into training, validation and test datasets

- Training loss: MSE (Mean Squared Error)

- Evaluation metrics
«  MAPE (Mean Absolute Percentage Error)

predicted; — actual;|
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P actual;

« Angular score
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Hyperparameters tuning

Hyperparameters
Sequence size
Hidden size (hidden state dimension)
Stacked LSTMs
Learning rate

Sequence H;it:;:n Stacked | Learning | MAPE | Angular
size L LSTMs rate (%) score (%)
dimension
10 10 1 0.001 11.10 2.81
10 10 1 0.0001 29.51 3.41
20 10 1 0.001 17.70 4.57
20 10 1 0.0001 30.20 5.27
30 10 1 0.001 11.67 3.70
30 10 | 0.0001 19.10 4.31
10 20 1 0.001 10.52 2,77
10 20 1 0.0001 17.07 3.04
20 20 5 0.0001 26.64 6.35
30 20 5 0.001 8.83 3.94
30 20 5 0.0001 20.87 4.90
10 100 5 0.001 21.10 4.00
10 100 5 0.0001 15.96 2.88
20 100 5 0.001 18.71 4.87
20 100 5 0.0001 15.33 4.79
30 100 5 0.001 12.07 4.04
30 100 5 0.0001 17.48 4.10




Hyperparameters tuning

Effect of stacked LSTMs on MAPE Effect of stacked LSTMs on angular score
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Hyperparameters tuning

- Hyperparameters
« Sequence size
« Hidden size (hidden state dimension)
« Stacked LSTMs
- Learningrate

 Chosen configuration
* Sequence size =10
* Hiddensize = 20
* Stacked LSTMs =1
* Learningrate =0.001

Hidden

Sequence atate Stacked | Learning | MAPE | Angular
size L LSTMs rate (%) score (%)
dimension
10 10 1 0.001 11.10 2.81
10 10 1 0.0001 29.51 3.41
20 10 1 0.001 17.70 4.57
20 10 1 0.0001 30.20 5.27
30 10 1 0.001 11.67 3.70
30 10 | 0.0001 19.10 4.31
10 20 1 0.001 10.52 2,77
10 20 1 0.0001 17.07 3.04
20 20 5 0.0001 26.64 6.35
30 20 5 0.001 8.83 3.94
30 20 5 0.0001 20.87 4.90
10 100 5 0.001 21.10 4.00
10 100 5 0.0001 15.96 2.88
20 100 5 0.001 18.71 4.87
20 100 5 0.0001 15.33 4.79
30 100 5 0.001 12.07 4.04
30 100 5 0.0001 17.48 4.10




Evaluation on unseen data

Moving average of the predicted wave direction

WMW%WMMWW%W

{ —— Moving average
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* Prediction error: 40°

* Moving average on sequences of 28 seconds
* Mean: 317°
* Standard deviation: 7°
* Error:37°



Future challenges

* Representative dataset
» Conduct more experiments in different sea conditions to capture a broader range of data

* QOther sea characteristics to enhance the model
* Wind
* Current

* Real-time estimation
* Short inference time
* Energy constraints

 Navigation adaptation
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Thank you for your attention




Comparison with baseline predictors

Model MAPE (%) | Angular score (°)
MLP 34.35 5.27
Transformer [9] 11.66 2.85
ResNet 18 [7] 28.43 5.67
CNN [8] 33.42 5.23
mLSTM [10] 11.7 2.86
Proposed model 10.52 2.77




Hyperparameters tuning

Effect of sequence size on MAPE Effect of sequence size on angular score
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Hyperparameters tuning

Effect of learning rate on MAPE Effect of learning rate on angular score
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Hyperparameters tuning

Effect of hidden state dimension on MAPE Effect of hidden state dimension on angular score
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